

<u>Content</u>

New research fleet for The Netherlands

Ocean and North Sea vessel: Anna Weber-van Bosse

The name of the vessel: who was

Designing and building the ship

General characteristics

What will it be used for and what acoustics instruments do we need?

Old NIOZ research fleet

ANNA WEBER-VAN BOSSE

- Stern: 15 m, local work

1111

- Navicula: 23 m, Waddensea and Dutch SW delta
- Pelagia: 66 m, North Sea and ocean

New NIOZ research fleet

Anna Weber-van Bosse

Anna Weber-van Bosse

Born 27 March 1852: Anne Antoinette van Bosse

Married at age 19, widow at age 26

Studied botany and met zoologist Max Weber

Age 31: Anna and Max married \longrightarrow Anna Weber-van Bosse

Anna and Max Weber organised and joined various (marine) scientific expeditions (a.o. South Africa, Indonesian archipelago)

Her most important publications (algae)

Anna Weber-van Bosse

1910: Anna Weber was an internationally highly esteemed scientist and the first woman in The Netherlands receiving an honorary doctorate

> Anna Weber christens the NIOZ vessel Max Weber (1933)

1935: Appointed Knight in the Order of Oranje-Nassau

29 October 1942: Anna Weber-van Bosse dies at age 90

Main design goals:

- Best possible platform for science (physical & chemical oceanography, geology, biology, archeology,)
- 24 hours science
- More people than on Pelagia
- Larger working deck than Pelagia
- Test platform for maritime industry
- Reduced environmental impact

Science platform

- Limited number of fixed labs/working areas:
 - Main lab (chemistry, sediments, preparation of equipment)
 - Wet lab (water samples, plankton nets, etc.)
 - Dry lab (science centre, microscopy, acoustics, video wall, etc.)
 - Geolab/ROV, AUV, glider hangar
 - CTD hangar (separated from other activities)
- Large working deck (starboard side and aft deck)
- Laboratory containers (17) in hold and on deck: multipurpose ship
- Drop keel and gondola for large set of acoustic equipment

Test platform for maritime industry

Example:

Prepared for testing alternative power sources (e.g. containerised bio-fuel power units)

SEA RES

ANNA WEBER-VAN BOSSE

Reduced environmental impact

- Diesel electric propulsion: fuel optimisation using batteries and peak shaving
- Prepared for methanol (extra tanks built in)
- Reuse `waste' energy (heat)
- Low impact materials (for instance paint)
- Low noise (environment and acoustic scientific equipment): DNV Silent R

Examples of science using acoustics

Biology: bathymetry, habitat mapping, water column observations (fish, plankton)

Geology: bathymetry, sediment transport and distribution, subsurface structures, water column (gas seeps, suspension clouds)

Physical oceanography: currents, bathymetry

Chemical oceanography: bathymetry, sediment distribution, water column (gas seeps)

Archeology: seabed mapping, wrecks in 3D

All science fields: underwater position of equipment

Detailed bathymetry Seabed backscatter Water column reflections

Multibeams

Improvements relative to
Pelagia (EM302, 1°x2°):Higher resolution, better data in shallow water, visualise objects
in water column, more details in backscatter

 SEA RESEARCH

 Deep water:
 EM304 MKII, 0.5°x1.0°
(incl. extra detections)

 Shallow water:
 EM2040 MKII, 0.4°x0.7°
(200-700 kHz, extra detections)

SIS Remote

- Simple and reliable
- Shallow and deep water
- Bridge and science

Pelagia: EA600

- Data logging possible

Single beam echosounder

Successor of EA600:

SEA RESE

Functions well

EA640

Sediment profiling:

- Shallow and deep water
- High resolution and deep penetration
- No/weak side reflections (so narrow beam)
- Various pulse types
- Basic (real-time) processing

Pelagia: Oretech 3010

(Bad penetration in firm sediments

Quick loss of penetration on slopes)

Parametric echosounder: TOPAS PS18

Water column observations Many different `targets':

- fish, plankton
- gas bubbles
- sediment plumes
- density layers

Need to quantify

Good processing options

Widely used in science world to compare data

Pelagia: EK500 (18, 38, 120 kHz)

More frequencies and processing needed

EK80: 18, 38, 70, 120, 200, 333 kHz transducers EchoView software

Multiple frequencies

Underwater positioning:

- Samplers (box, pistoncorers)
- Towed equipment (video, dredge) 2 USBL systems
- ROV/AUV
- Shallow and deep water

Pelagia: HiPAP 100

, but not in shallow water and ESEARctowing further behind the ship

Shelf seas and ocean range<5000m: HiPAP502

HiPAP102

Deep ocean:

Information on currents essential for physical oceanography, but also biology, geology, chemistry Surface down to 1 km or more

Multiple ADCPs

Pelagia: 1 vessel mounted 38 kHz ADCP: no details in upper layers

NIOZ has high frequency ADCPs to be deployed on rope:

does not work during transit

Easy operation: ADCPs should all use same software

55, 100, 250, 500 kHz ADCP from single manufacturer

- Large set of acoustic equipment
- Multiple (partly overlapping) frequency ranges
- Possibly problems using multiple devices

Pelagia: sometimes interference New ship more acoustics, expect more interference

- Synchronise pulses
- Acoustic cycle as short as possible (so overlap if possible)
- Easy integration of all equipment

Trigger pulse synchronization: K-Sync

- Large gondolas and blisters cause drag
- Asymmetrical location asymmetric drag compensate with rudder additional drag (Extra CO₂ and money)

Final solution, important: shallow NIOZ harbour Nothing below keel - HiPAP502: deployment pole (sphere protected when not in use) - EK80, 1 ADCP & HiPAP102: drop keel (3.3x0.8 m, 3 m down) **EK80** 100 kHz ADCP HIPAP102EBER-VAN BOSSE **Hydrophone** Spare All other acoustics: hull-integrated gondola (±4x8m): symmetrical & lower drag save fuel (5%)

This sheet has been adjusted for public release

This sheet has been adjusted for public release

Hull-integrated gondola

This sheet has been adjusted for public release

Hull-integrated gondola, will it work?

Pelagia EM302 gondola:

Freely mounted

Hull-integrated gondola, will it work?

Asked shipyard for ships with similar integrated gondola

All respondents

..... but be aware that the success also depends on: - General hull shape

- Bow shape
 - Thruster tunnels
 - Welding seams

- Etc.

Demand for low environmental impact ship Positive experiences earlier vessels

0 6

Hull-integrated gondola

